

Hardware Security and Trust: Where We Are and Where We Should Go

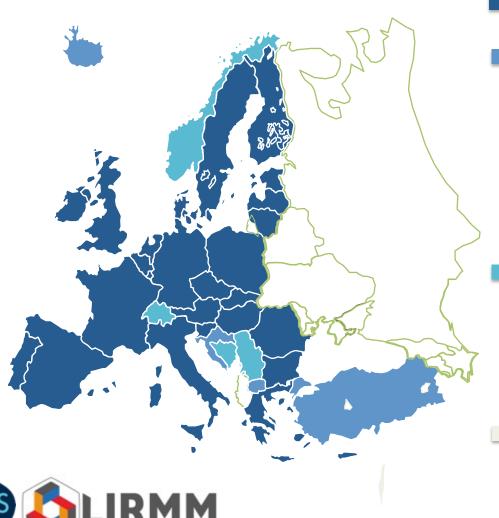
Giorgio DI NATALE

What is COST?

1

 COST is the oldest and widest European intergovernmental framework for transnational Cooperation in Science and Technology

<u>2</u>


 For more than 45 years COST has supported networking of research activities across all its Member countries

3

 COST is open to all disciplines, to all novel and ground-breaking S&T ideas

COST Countries

■ The 27 EU Member States

EU Acceding & Candidate Countries

- Croatia
- Former Yugoslav Republic of Macedonia
- Iceland
- Turkey

Other Countries

- ▶ Bosnia and Herzegovina
- ▶ Republic of Serbia
- Norway
- Switzerland

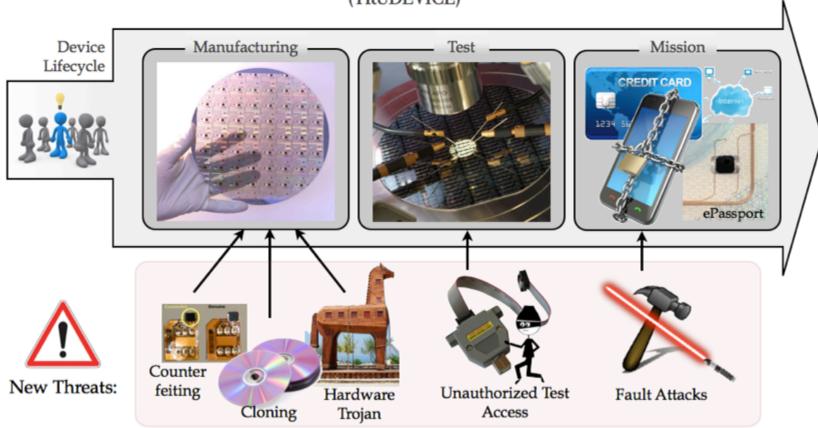
COST Cooperating States

Israel

What can be done in a COST Action

- Meetings
- Short Term Scientific Missions
 - Allow a researcher (especially early-stage) to go to an institution in another COST country to foster cooperation
 - Duration: from 5 days up to 3 months
- Training Schools

TRUDEVICE


- Scientific targets: to develop new design and manufacturing flows for the production of secure integrated circuits
- Networking: to create a new community composed of academic, industrial and public organizations

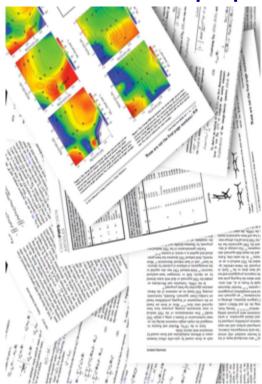
TRUDEVICE

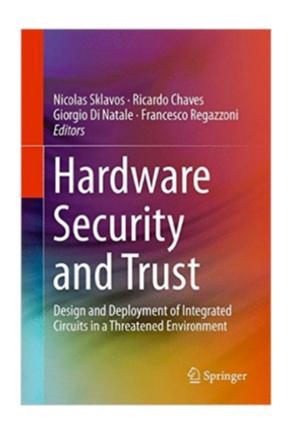
Trustworthy Manufacturing and Utilization of Secure Devices (TRUDEVICE)

Action's Research Areas

- Area 1: Manufacturing test of secure devices
- Area 2: Trustworthy manufacturing of secure devices
- Area 3: Fault attack detection and protection
- Area 4: Reconfigurable devices for secure functions
- Area 5: Validation, Evaluation, and Fault Injection

TRUDEVICE: from 12/12/2012


- 6 workshops
 - Avignon (FR), Freiburg (DE), Amsterdam (NL),
 Grenoble (FR), Saint Malo (FR), Dresden (DE)
- 1 final conference
 - Barcelona (ES)
- 2 training schools
 - Lisbon (PT) and Leukerbad (CH)
- 39 Short Terms Scientific Missions



Scientific Results

More than 400 papers

Thanks to many people

Where we are...

Action's Research Areas

- Area 1: Manufacturing test of secure devices
- Area 2: Trustworthy manufacturing of secure devices
- Area 3: Fault attack detection and protection
- Area 4: Reconfigurable devices for secure functions
- Area 5: Validation, Evaluation, and Fault Injection

Fault Attacks

- Forcing an error in a circuit implementing a cryptographic function in order to discover a secret
- Historically, many papers tried to adapt the classical "fault tolerance" (for reliability/radiation)
- However, malicious faults are different!

Fault Attacks

- Laser, EM
- Voltage Glitch
- Clock Glitch
- Temperature

Means

- CMOS (90, 65, 45, 28)
- FDSOI (28)
- CMOS vs FDSOI
- Front vs Backside

Technologies

- Digital, Mixed
- Memory
- FPGA
- SmartCard, TRNG, RFID

Devices

Real Experiments

Models

- Electrical level
- Logic level
- RTL level

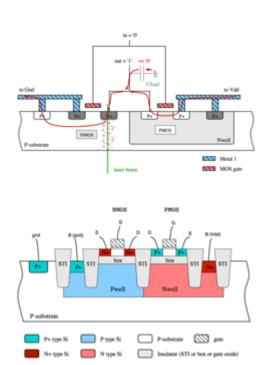
Simulators

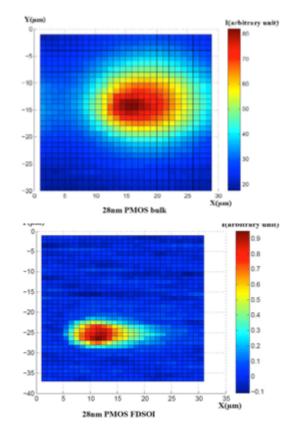
Vulnerability

Analysis

- Netlist
- RTL
- Formal

Counter Measures

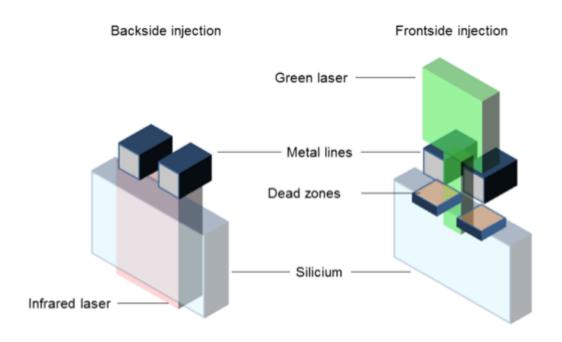

- Fault Detection
- Error Detection


Injections:

CMOS vs FDSOI

Figure of merits of 28nm Si technologies for implementing laser attack resistant security dedicated circuits

2015 IEEE Computer Society Annual Symposium on VLSI



Injections:

Frontside vs Backside

Front-side vs backside laser injection: a comparative study ACM Transactions on Embedded Computing Systems, Vol. 9, No. 4

Injections: RFID

A Combined Design-Time/Test-Time Study of the Vulnerability of Sub-Threshold Devices to Low Voltage Fault Attacks

IEEE Trans. on Emerging Topics in Computing, Vol. 2, Issue 2, 2014

- Low-cost fault injection attack for RFID
- Based on voltage glitch to cause setup time violations
- Real chip (65-nm, working in subthreshold voltage range)
- Results:
 - It is possible to inject exploitable faults
 - It is possible to identify the most critical parts of the circuit

Injections: TRNG with EM

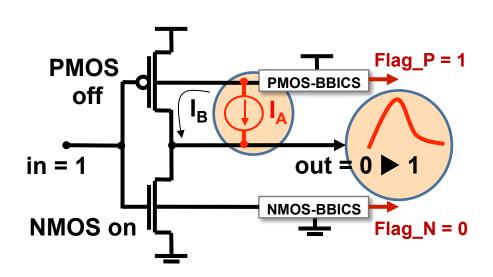
Contactless Electromagnetic Active Attack on Ring Oscillator Based True Random Number Generator

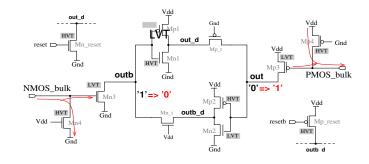
COSADE 2012

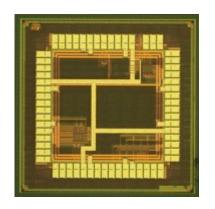
- RO-based TRNG (with 50 Ros)
- EM injection allows
 - to influence the frequency
 - to control the monobit bias of the TRNG output
 - even when low power electromagnetic fields are exploited.

Modeling Laser Attacks: RTL Level

A Multiple Fault Injection Methodology based on Cone Partitioning towards RTL Modeling of Laser Attacks **DATE 2014**

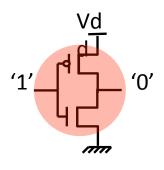

- A methodology to reduce the fault space of laser injection campaigns
- Based on:
 - locality characteristic of laser fault
 - partitioning of the RTL description of the circuit
- Results are more representative of laser attacks than random bit injection

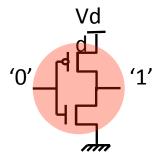


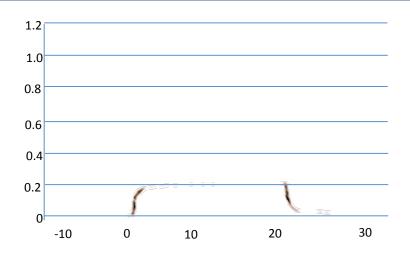

Bulk Built-In Current Sensor

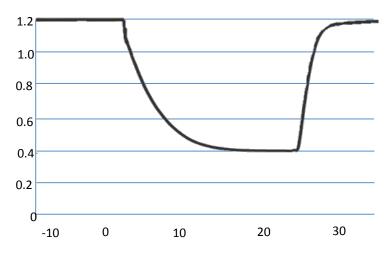
Experimental validation of a Bulk Built-In Current Sensor for detecting laser-induced currents

IOLTS 2015

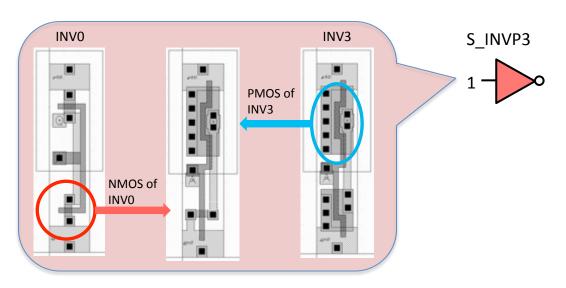


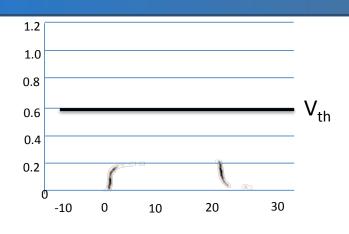


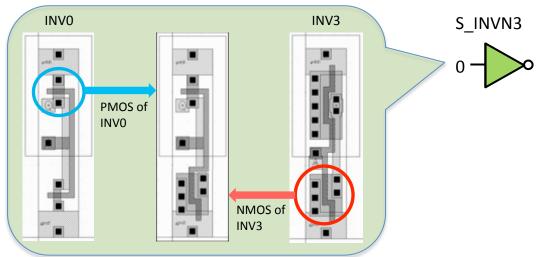


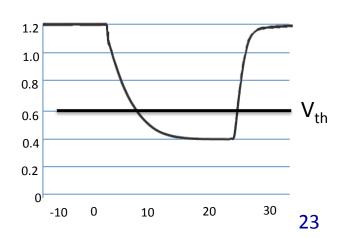

Laser Detector

Laser spot = 3.25µm Laser power = 1.0w Technology = 90nm ST

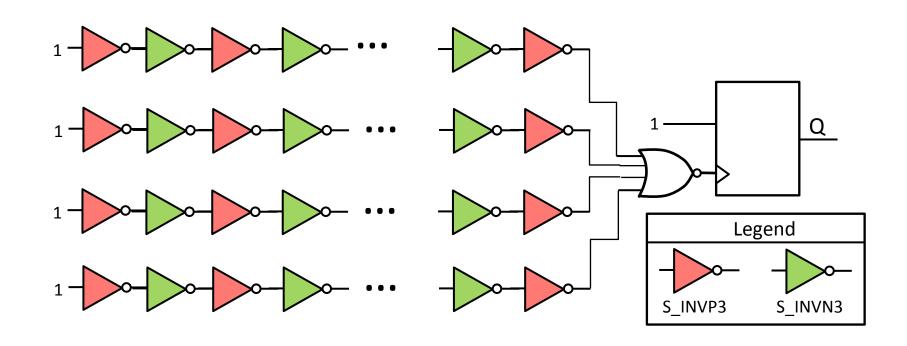








Laser Detector



Laser Detector

Customized Cell Detector for Laser-Induced-Fault Detection, **IOLTS 2014**

Error Detection: Use of codes

Relations Between the Entropy of a Source and the Error Masking Probability for Security-Oriented Codes

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 1, JANUARY 2015

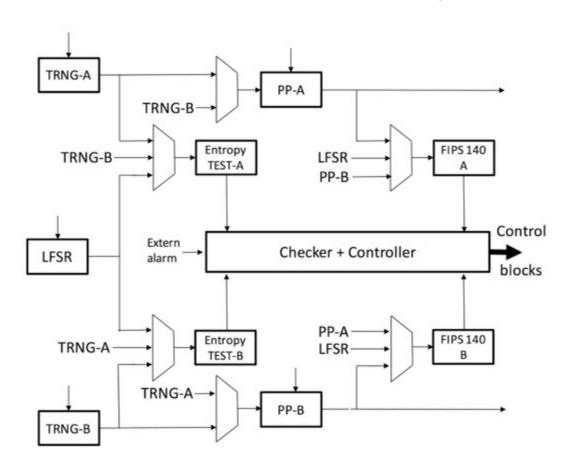
- Error detection/correction codes are usually designed for uniformly distributed codewords, i.e., for codes that have maximal entropy.
- In practice, the code-words are not uniformly distributed
- → their entropy is smaller and their efficiency in detecting attacks degrades

Error Detection: Use of codes

Protecting Cryptographic Hardware against Malicious Attacks by Nonlinear Robust Codes

2014 IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

- Fault-based attacks against cryptographic circuits must be addressed by techniques that are different from approaches designed for random transient faults
- Systematic investigation of robust error-detecting codes that specifically target malicious attacks and guarantee minimal bounds on detection probability



Error Detection:

For a TRNG

Towards a Dependable True Random Number Generator With Self-Repair Capabilities

IEEE Transactions on Circuits and Systems I: Regular Papers

Where we should go...

Computing evolution

Big challenges ('60s)

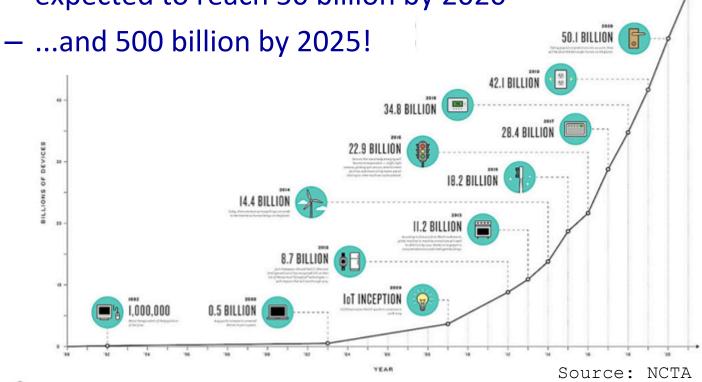
- Science
- Business
- Military

People ('80s)

- Work
- Office
- Games

Things + People (today)

Quality of life



Scenario

The number of connected devices is growing rapidly

– expected to reach 50 billion by 2020

(Good) Properties of IoT devices

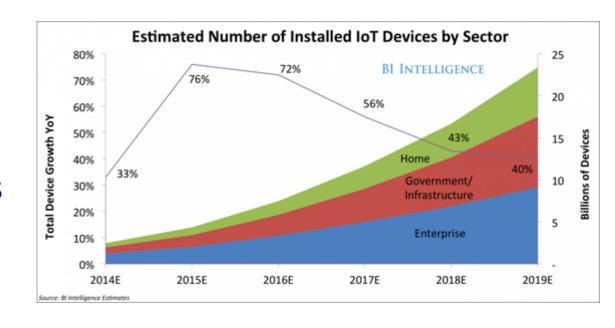
- Innovative
- With the goal of improving the quality of life

(Challenging) Properties of IoT devices

- Limited resources
 - Costs limitation
 - Power/Energy limitations

- Short Time-to-Market
 - Shorter design/verification/test processes
- Fabricated by new and possibly unreliable companies

(Bad) Properties of IoT devices


- It increases the number of security risks
- Any security hole in a IoT device can become an entry point to the whole system
- Privacy issues

Examples of critical scenarios

- Industry and Logistic (e.g., packages with built-in RFID)
- Medical environments
- Smart cities
- Home devices
- Autonomous cars
- Wearable devices

Surveillance Camera Attack

- A massive Distributed Denial of Service (DDoS) attack slowed down major websites
 - Twitter, Spotify, Amazon, Reddit, Yelp, Netflix, and The New York Times
- Target: Dyn (a major DNS host)
- Attack: a weakness in surveillance cameras, that allowed installing malicious software in more than 25000 cameras!

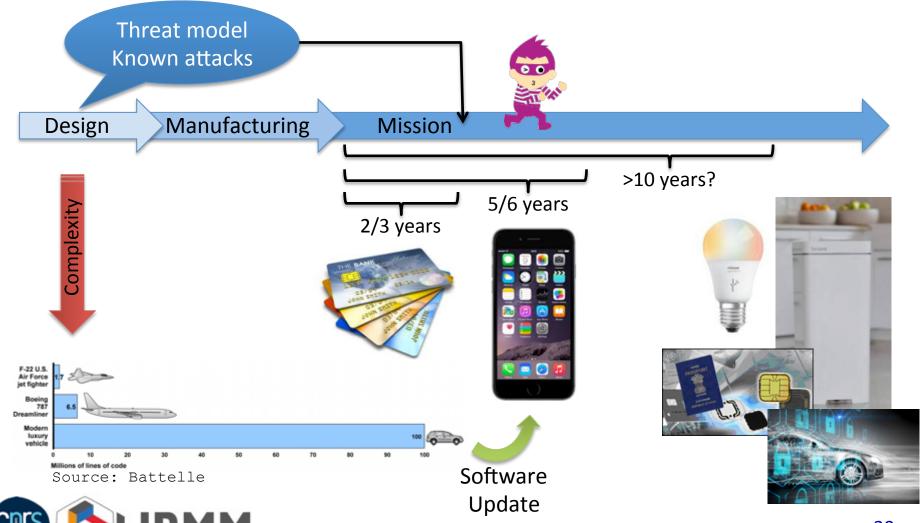
Car attack

 A security hole in FCA's Uconnect internet-enabled software allows hackers to remotely access the car's systems and take control

- Google is developing a platform to connect cars to Internet
 - To lock or unlock vehicles, start the engine or even monitor vehicle performance from a computer or smartphone

What is security?

- It has to do with an asset that has some value
- From the dictionary: the state of being free from threat
 - Depends on what are you protecting your asset from (the threat)
- How to guarantee security?
 - Implementing countermeasures


Asset – Threat – Countermeasure

- Countermeasures are build upon a threat model
- The cost of the attack must be worth the asset
- The countermeasure must be cheaper than the loss of the asset
- Successful attacks:
 - Not modeled (i.e., new attacks)
 - Exploiting bugs or weaknesses

Where is the problem?

What can we expect?

- Plenty of "sick" devices:
 - Unsecure
 - Because new attacks are invented
 - Because too complex (i.e., bugs)
 - With bad settings
 - Without support/update
 - Because of unreliable companies
 - Because of lack of maintenance
 - Built with the intention of performing attacks
 - Malicious Hardware Devices

Some data

A recent study by HP found alarming security statistics in the IoT space.

Of 10 popular devices tested:4

70% contained security exposures

25
holes or risks of compromising the home network, on average, found for each device

80%
did not require
passwords
of sufficient
complexity and
length

90% collected at least one piece of personal information

70%
allowed an
attacker to identify
a valid account
through account
enumeration

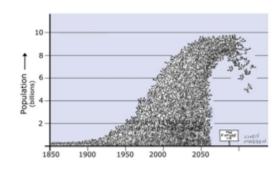
http://www.androidauthority.com/what-is-the-internet-of-things-592491/

Where to look for solutions?

- At all levels (hardware, firmware, software)
- For all devices
 - Things (sensors, actuators, devices)
 - Communication Infrastructures (routers, gateways)
 - Servers, Cloud

Research directions

- New EDA tools
- New standards
- Open Hardware
- More awareness



Conclusion

- Security is a competition
 - Attack vs Countermeasures

 With IoT we have to expect some of the devices not to be able to run fast enough

New solutions and paradigms are required!

